
ocspd Documentation
Release 0.9

Chris Snijder (greenhost), Maarten de Waard (greenhost)

Nov 30, 2017

Table of Contents

1 Introduction 3
1.1 Why do I need ocspd? . 3

1.1.1 NOTICE!! . 3
1.1.2 Quick start . 3
1.1.3 Module description . 7
1.1.4 Daemon documentation . 8
1.1.5 Scheduler documentation . 16
1.1.6 Exception handling . 19

1.2 Indices and tables . 22

Python Module Index 23

i

ii

ocspd Documentation, Release 0.9

tl;dr: This project was renamed to Stapled, which can be found here.

As of now this project has been renamed to Stapled because there are various other projects with the name ocspd
which is confusing. Plus we want to implement functional tests in the near future, which are probably going to be
based on a package also called ocsdp. This project will be kept here until June 30th 2018, in case you have this repo
set as a dependency of some project.

From now on you will get a warning when you install the package, that tells you to use Stapled instead. From the 1st
of January 2018 you will get an error instead. From June 30th 2018 onward the installation will stop working entirely.

You can find Stapled here.

Table of Contents 1

https://github.com/greenhost/stapled
https://github.com/greenhost/stapled

ocspd Documentation, Release 0.9

2 Table of Contents

CHAPTER 1

Introduction

1.1 Why do I need ocspd?

ocspd is meant to be a helper daemon for HAProxy which doesn’t do OCSP stapling out of the box. However
HAProxy can serve staple files if they are place in the certificate directory, which is what we use to our benefit.

1.1.1 NOTICE!!

tl;dr: This project was renamed to Stapled, which can be found here.

As of now this project has been renamed to Stapled because there are various other projects with the name ocspd
which is confusing. Plus we want to implement functional tests in the near future, which are probably going to be
based on a package also called ocsdp. This project will be kept here until June 30th 2018, in case you have this repo
set as a dependency of some project.

From now on you will get a warning when you install the package, that tells you to use Stapled instead. From the 1st
of January 2018 you will get an error instead. From June 30th 2018 onward the installation will stop working entirely.

You can find Stapled here.

1.1.2 Quick start

Table of Contents

• Documentation

• System requirements

• Installation

– From github (for developers)

3

https://github.com/greenhost/stapled
https://github.com/greenhost/stapled

ocspd Documentation, Release 0.9

– Upgrading

– Debian package

• Using ocspd

– Named Arguments

• Testing ocspd

Documentation

Read the full documentation on Read the docs.

System requirements

This application requires Python 3.3+ or Python 2.7.9 and an installed version of PIP for the Python version you
are using. It is also convenient to have virtualenv installed so you can make a separate environment for ocspd’s
dependencies.

Installation

Before installation make sure you have met the System requirements. You can install the ocsp daemon from the source
code repository on our gitlab instance.

From github (for developers)

Download the source from the repo
git clone https://github.com/greenhost/ocspd.git
Enter the source directory
cd ocspd/
Setup a virtualenv
virtualenv -p python3 env/
Load the virtualenv
source env/bin/activate
Install a dependency that is not yet it PyPi
pip install git+https://github.com/wbond/certvalidator.
→˓git@4383a4bfd5e769679bc4eedd1e4d334eb0c7d85a
Install the current directory with pip. This allows you to edit the code
pip install .

Every time you want to run ocspd you will need to run source env/bin/activate to load the virtualenv first.
Alternatively you can start the daemon by running ocspd

Upgrading

If you had previously installed a version of ocspd from github, to upgrade run the following:

Deactivate the virtualenv if active
deactivate
Delete the virtualenv (we will start clean)
rm -rf ./env

4 Chapter 1. Introduction

https://readthedocs.org/projects/ocspd/

ocspd Documentation, Release 0.9

Make a new virtualenv
virtualenv -p python3 env/
Update to the latest version
git pull
Install a dependency that is not yet it PyPi
pip install git+https://github.com/wbond/certvalidator.
→˓git@4383a4bfd5e769679bc4eedd1e4d334eb0c7d85a --upgrade
Install the current directory with pip. This allows you to edit the code
pip install . --upgrade

Debian package

We package ocspd for Debian, but it will still have depenfencies that are not available as debian packages. This means
you need to either still use PIP to install those dependencies, or you need to package them yourself.

There is a build script in the root of this project: build_deb_pkg.sh. It will automatically download the dependencies
master branches from Github and package them, the finished packages including a package for ocspd will be in the
build directory.

Warning: Do not use this, none of the source code you are about to check out will be audited, you will need to
vet it yourself. Also it will cause side effects inluding but not limited to loss of hair, stress and diziness. This is not
for production use. We do not take any responsibility for what you do with this script, we provide it as is, it will
probably fail anyway but we may also stop supporting it at any time, in fact this is highly likely.

You have been warned, now please don’t continue at your own risk or go for the PIP install.

Install available dependencies
apt install python-future python-all python-configargparse
Download remaining dependencies and convert them to debian packages
./build_deb_pkg.sh
Install all packages
dpkg -i build/*.deb

Using ocspd

Update OCSP staples from CA’s and store the result so HAProxy can serve them to clients.

usage: ocspd [-h] [-c CONFIG] [--minimum-validity MINIMUM_VALIDITY]
[-t RENEWAL_THREADS] [--verbosity VERBOSITY] [-v] [-D]
[--file-extensions FILE_EXTENSIONS] [-r REFRESH_INTERVAL]
[-l [LOGDIR]] [--syslog] [-q]
[-s HAPROXY_SOCKETS [HAPROXY_SOCKETS ...]] -d DIRECTORIES
[DIRECTORIES ...] [--no-recycle] [-i IGNORE [IGNORE ...]]

Named Arguments

-c, --config Override the default config file locations (default=~/.ocspd.conf,
/etc/ocspd/ocspd.conf)

--minimum-validity If the staple is valid for less than this time in seconds an attempt will be made to
get a new, valid staple (default: 7200).

1.1. Why do I need ocspd? 5

ocspd Documentation, Release 0.9

-t, --renewal-threads Amount of threads to run for renewing staples. (default=2)

--verbosity Verbose output argument should be an integer between 0 and 4, canbe overridden
by the -v argument.

-v Verbose output, repeat to increase verbosity, overrides the verbosity argument
if provided

-D, --daemon Daemonise the process, release from shell and process group, run under new
process group.

--file-extensions Files with which extensions should be scanned? Comma separated list (default:
crt,pem,cer)

-r, --refresh-interval Minimum time to wait between parsing cert dirs and certificates (default=60).

-l, --logdir Enable logging to ‘/var/log/ocspd/’. It is possible to supply another directory.
Traces of unexpected exceptions are placed here as well.

--syslog Output to syslog.

-q, --quiet Don’t print messages to stdout

-s, --haproxy-sockets Sockets to connect to HAProxy. Each directory you pass with the directory
argument, should have its own haproxy socket. The order of the socket arguments
should match the order of the directory arguments.Example:I have a directory /
etc/haproxy1 with certificates, and a HAProxy that serves these certificates
and has stats socket /etc/haproxy1/haproxy.sock. I have another di-
rectory /etc/haproxy2 with certificates and another haproxy instance that
serves these and has stats socket /etc/haproxy2/haproxy.sock. I would
then start ocspd as follows:./ocspd /etc/haproxy1 /etc/haproxy2
-s /etc/haproxy1.sock /etc/haproxy2.sock

-d, --directories Directories containing the certificates used by HAProxy. Multiple directories
may be specified separated by a space.

--no-recycle Don’t re-use existing staples, force renewal.

-i, --ignore Ignore files matching this pattern. Multiple paths may be specified separated by a
space. You can escape the pattern to let the daemon evaluate it instead of letting
your shell evaluate it. You can use globbing patterns with * or ?. Relative paths
are also allowed.If the path starts with / it will be considered absolute if it does
not, the pattern will be compared to the last part of found files.

The daemon will not serve OCSP responses, it can however inform HAPRoxy about the staples it creates using the
--haproxy-sockets. argument. Alternatively you can configureHAPRoxy or another proxy (e.g. nginx has
support for serving OCSP staples) to serve the OCSP staples manually.

Testing ocspd

Testing an application like this is hard, but that is no excuse not to do testing. We want to have unit tests but to do that
correctly we need to run an OCSP server locally, quite a setup. So until now we didn’t do so yet. Note that if you have
experience with this kind of setup and you want to help this project move forward, you are welcome to help.

Obviously we do test ocspd, admittedly a little bit primitively. You can find a script in scripts/ called
refresh_testdata.sh. It will delete any directory named testdata in the root of the project and create a
fresh one. Then it will download 3 certificate chains from live servers. These will be placed in subdirectories with the
same name as the domain name.

Next you can run python ocspd -vvvv -d testdata/* to get output printed to your terminal. The
testdata/[domain].[tld] directories will be populated with [domain].[tld].ocsp files.

6 Chapter 1. Introduction

ocspd Documentation, Release 0.9

1.1.3 Module description

ocspd consists of several modules that interact with each other in order to keep OCSP staples up-to-date. In short,
these are the modules:

Scheduler It is possible to schedule a task with the scheduler. It will wait for the scheduled moment and
add the task to a queue to be handled by one of the other modules.

Finder Finds certificates in the specified directories. When new file are found, or existing files are
changed it schedules a parsing for these certificates.

Parser Parses certificates and parses them. If certificates are correct, it schedules a renewal for these
certificates.

Renewer The renewer takes input from the scheduler. It contacts the CA to renew an OCSP staple. After
renewing the staple it schedules a new renewal and tells the scheduler to call the adder right away.

Adder This is a module that can talk to the HAProxy socket to add OCSP staples without restarting
HAProxy.

This graph explains their interaction. Every arrow passes a OCSPTaskContext instance to the other module.

1.1. Why do I need ocspd? 7

ocspd Documentation, Release 0.9

SchedulerThread

01F
550

CertParserThread

 parse cert

OCSPRenewerThread

 renew staple

OCSPAdder

 add staple

CertFinderThread

 schedule next renewal

 schedule parsing schedule renewal

Certificate Authority

 renew staple

HAProxy

 add staple

1.1.4 Daemon documentation

Table of Contents

• Source code

– ocspd.main

– ocspd.core.daemon

– ocspd.core.taskcontext

– ocspd.core.certfinder

8 Chapter 1. Introduction

ocspd Documentation, Release 0.9

– ocspd.core.certparser

– ocspd.core.ocsprenewer

– ocspd.core.ocspadder

– ocspd.core.certmodel

Source code

ocspd.main

Initialise the ocspd module.

This file only contains some variables we need in the ocspd name space.

ocspd.FILE_EXTENSIONS_DEFAULT = 'crt,pem,cer'
The extensions the daemon will try to parse as certificate files

ocspd.DEFAULT_REFRESH_INTERVAL = 60
The default refresh interval for the ocspd.core.certfinder.CertFinderThread.

ocspd.MAX_RESTART_THREADS = 3
How many times should we restart threads that crashed.

ocspd.LOG_DIR = '/var/log/ocspd/'
Directory where logs and traces will be saved.

ocspd.DEFAULT_CONFIG_FILE_LOCATIONS = ['~/.ocspd.conf', '/etc/ocspd/ocspd.conf']
Default locations to look for config files in order of importance.

ocspd.core.daemon

This module bootstraps the ocspd process by starting threads for:

• 1x ocspd.scheduling.SchedulerThread

Can be used to create action queues that where tasks can be added that are either added to the action queue
immediately or at a set time in the future.

• 1x ocspd.core.certfinder.CertFinderThread

– Finds certificate files in the specified directories at regular intervals.

– Removes deleted certificates from the context cache in ocspd.core.daemon.run.models.

– Add the found certificate to the the parse action queue of the scheduler for parsing the certificate file.

• 1x ocspd.core.certparser.CertParserThread

– Parses certificates and caches parsed certificates in ocspd.core.daemon.run.models.

– Add the parsed certificate to the the renew action queue of the scheduler for requesting or renewing the
OCSP staple.

• 2x (or more depending on the -t CLI argument) ocspd.core.ocsprenewer.OCSPRenewerThread

– Gets tasks from the scheduler in self.scheduler which is a ocspd.scheduling.Scheduler
object passed by this module.

– For each task:

1.1. Why do I need ocspd? 9

ocspd Documentation, Release 0.9

* Validates the certificate chains.

* Renews the OCSP staples.

* Validates the certificate chains again but this time including the OCSP staple.

* Writes the OCSP staple to disk.

* Schedules a renewal at a configurable time before the expiration of the OCSP staple.

The main reason for spawning multiple threads for this is that the OCSP request is a blocking action that also
takes relatively long to complete. If any of these request stall for long, the entire daemon doesn’t stop working
until it is no longer stalled.

• 1x ocspd.core.ocspadder.OCSPAdder (optional)

Takes tasks haproxy-add from the scheduler and communicates OCSP staples updates to HAProxy through
a HAProxy socket.

ocspd.core.taskcontext

This module defines an extended version of the general purpose scheduling.ScheduledTaskContext for use
in the OCSP daemon.

class ocspd.core.taskcontext.OCSPTaskContext(task_name, model, sched_time=None, **at-
tributes)

Adds the following functionality to the scheduling.ScheduledTaskContext:

• Keep track of the exception that occurred last, and how many times it occurred.

• Renames ScheduledTaskContext’s subject argument to model.

__init__(task_name, model, sched_time=None, **attributes)
Initialise a OCSPTaskContext with a task name, cert model, and optional scheduled time.

Parameters

• task_name (str) – A task name corresponding to an existing queue in the scheduler.

• model (ocspd.core.certmodel.CertModel) – A certificate model.

• sched_time (datetime.datetime|int) – Absolute time (datetime.datetime ob-
ject) or relative time in seconds (int) to execute the task or None for processing ASAP.

• attributes (kwargs) – Any data you want to assign to the context, avoid using names
already defined in the context: scheduler, task_name, subject, model, sched_time, resched-
ule.

set_last_exception(exc)
Set the exception that occurred just now, this function will return the amount of times the same exception
has occurred in a row.

Parameters exc (Exception) – The last exception.

Return int Count of same exceptions in a row.

Todo: Make sure two similar exceptions are treated as identical, e.g. ignore attributes that will be different
every time. https://code.greenhost.net/open/ocspd/issues/15

10 Chapter 1. Introduction

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://code.greenhost.net/open/ocspd/issues/15

ocspd Documentation, Release 0.9

ocspd.core.certfinder

This module locates certificate files in the supplied directories and parses them. It then keeps track of the following:

• If cert is found for the first time (thus also when the daemon is started), the cert is added to the ocspd.core.
certfinder.CertFinder.scheduler so the CertParserThread can parse the certificate. The file
modification time is recorded so file changes can be detected.

• If a cert is found a second time, the modification time is compared to the recorded modification time. If it
differs, if it differs, the file is added to the scheduler for parsing again, any scheduled actions for the old file are
cancelled.

• When certificates are deleted from the directories, the entries are removed from the cache in ocspd.core.
daemon.run.models. Any scheduled actions for deleted files are cancelled.

The cache of parsed files is volatile so every time the process is killed files need to be indexed again (thus files are
considered “new”).

class ocspd.core.certfinder.CertFinderThread(*args, **kwargs)
This searches directories for certificate files. When found, models are created for the certificate files, which are
wrapped in a ocspd.core.taskcontext.OCSPTaskContextwhich are then scheduled to be processed
by the ocspd.core.certparser.CertParserThread ASAP.

Pass refresh_interval=None if you want to run it only once (e.g. for testing)

__init__(*args, **kwargs)
Initialise the thread with its parent threading.Thread and its arguments.

Parameters

• models (dict) – A dict to maintain a model cache (required).

• directories (iter) – The directories to index (required).

• scheduler (ocspd.scheduling.SchedulerThread) – The scheduler object
where we add new parse tasks to. (required).

• refresh_interval (int) – The minimum amount of time (s) between search runs,
defaults to 10 seconds. Set to None to run only once (optional).

• file_extensions (array) – An array containing the file extensions of file types to
check for certificate content (optional).

run()
Start the certificate finder thread.

refresh()
Wraps up the internal CertFinder._update_cached_certs() and CertFinder.
_find_new_certs() functions.

Note: This method is automatically called by CertFinder.run()

_find_new_certs()
Locate new files, schedule them for parsing.

Raises ocspd.core.exceptions.CertFileAccessError – When the certificate file
can’t be accessed.

_del_model(filename)
Delete model from ocspd.core.daemon.run.models in a thread-safe manner, if another thread
deleted it, we should ignore the KeyError making this function omnipotent.

1.1. Why do I need ocspd? 11

https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/array.html#module-array

ocspd Documentation, Release 0.9

Parameters filename (str) – The filename of the model to forget about.

_update_cached_certs()
Loop through the list of files that were already found and check whether they were deleted or changed.

If a file was modified since it was last seen, the file is added to the scheduler to get the new certificate data
parsed.

Deleted files are removed from the model cache in ocspd.core.daemon.run.models. Any sched-
uled tasks for the model’s task context are cancelled.

Raises ocspd.core.exceptions.CertFileAccessError – When the certificate file
can’t be accessed.

check_ignore(path)
Check if a file path matches any pattern in the ignore list.

Parameters path (str) – Path to a file to match.

static compile_pattern(pattern)
Compile a glob pattern and return a compiled regex object.

Parameters pattern (str) – Glob pattern.

ocspd.core.certparser

This module parses certificate in a queue so the data contained in the certificate can be used to request OCSP re-
sponses. After parsing a new ocspd.core.taskcontext.OCSPTaskContext is created for the ocspd.
core.oscprenewe.OCSPRenewer which is then scheduled to be processed ASAP.

class ocspd.core.certparser.CertParserThread(*args, **kwargs)
This object makes sure certificate files are parsed, after which a task context is created for the ocspd.core.
oscprenewer.OCSPRenewer which is scheduled to be executed ASAP.

__init__(*args, **kwargs)
Initialise the thread with its parent threading.Thread and its arguments.

Parameters

• models (dict) – A dict to maintain a model cache (required).

• minimum_validity (int) – The amount of seconds the OCSP staple should be valid
for before a renewal is scheduled (required).

• scheduler (ocspd.scheduling.SchedulerThread) – The scheduler object
where we can get parser tasks from and add renew tasks to. (required).

• no_recycle (bool) – Don’t recycle existing staples (default=False)

run()
Start the certificate parser thread.

parse_certificate(model)
Parse certificate files and check whether an existing OCSP staple that is still valid exists. If so, use it, if not
request a new OCSP staple. If the staple is valid but not valid for longer than the minimum_validity,
the staple is loaded but a new request is still scheduled.

ocspd.core.ocsprenewer

This module takes renew task contexts from the scheduler which contain certificate models that consist of parsed
certificates. It then generates an OCSP request and sends it to the OCSP server(s) that is/are found in the certificate and

12 Chapter 1. Introduction

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

ocspd Documentation, Release 0.9

saves both the request and the response in the model. It also generates a file containing the respone (the OCSP staple)
and creates a new ocspd.core.taskcontext.OCSPTaskContext to schedule a renewal before the staple
expires. Optionally creates a ocspd.core.taskcontext.OCSPTaskContext task context for the ocspd.
core.oscpadder.OCSPAdder and schedules it to be run ASAP.

class ocspd.core.ocsprenewer.OCSPRenewerThread(*args, **kwargs)
This object requests OCSP responses for certificates, after which a new task context is created for the ocspd.
core.oscprenewer.OCSPRenewer which is scheduled to be executed before the new staple expires. Op-
tionally a task is created for the ocspd.core.oscpadder.OCSPAdder to tell HAProxy about the new
staple.

__init__(*args, **kwargs)
Initialise the thread’s arguments and its parent threading.Thread.

Parameters

• minimum_validity (int) – The amount of seconds the OCSP staple is still valid for,
before starting to attempt to request a new OCSP staple (required).

• scheduler (ocspd.scheduling.SchedulerThread) – The scheduler object
where we can get tasks from and add new tasks to. (required).

run()
Start the renewer thread.

schedule_renew(model, sched_time=None)
Schedule to renew this certificate’s OCSP staple in sched_time seconds.

Parameters

• context (ocspd.core.certmodel.CertModel) – CertModel instance None to
calculate it automatically.

• shed_time (int) – Amount of seconds to wait for renewal or None to calculate it
automatically.

Raises ValueError – If context.ocsp_staple.valid_until is None

ocspd.core.ocspadder

Module for adding OCSP Staples to a running HAProxy instance.

class ocspd.core.ocspadder.OCSPAdder(*args, **kwargs)
This class is used to add a OCSP staples to a running HAProxy instance by sending it over a socket. It runs
a thread that keeps connections to sockets open for each of the supplied haproxy sockets. Code from collectd
haproxy connection under the MIT license, was used for inspiration.

Tasks are taken from the ocspd.scheduling.SchedulerThread, as soon as a task context is re-
ceived, an OCSP response is read from the model within it, it is added to a HAProxy socket found in
self.socks[<certificate directory>].

TASK_NAME = 'proxy-add'
The name of this task in the scheduler

OCSP_ADD = 'set ssl ocsp-response {}'
The haproxy socket command to add OCSP staples. Use string.format to add the base64 encoded OCSP
staple

__init__(*args, **kwargs)
Initialise the thread with its parent threading.Thread and its arguments.

1.1. Why do I need ocspd? 13

https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/wglass/collectd-haproxy/blob/master/collectd_haproxy/connection.py
https://github.com/wglass/collectd-haproxy/blob/master/collectd_haproxy/connection.py
https://docs.python.org/3/library/threading.html#threading.Thread

ocspd Documentation, Release 0.9

Parameters

• socket_paths (dict) – A mapping from a directory (typically the directory contain-
ing TLS certificates) to a HAProxy socket that serves certificates from that directory. These
sockets are used to communicate new OCSP staples to HAProxy, so it does not have to be
restarted.

• scheduler (ocspd.scheduling.SchedulerThread) – The scheduler object
where we can get “haproxy-adder” tasks from (required).

_open_socket(key, socket_path)
Opens a socket located at socket_path and saves it in self.socks[key]. Subsequently it asks for a prompt
to keep the socket connection open, so several commands can be sent without having to close and re-open
the socket.

Parameters

• key – the identifier of the socket in self.socks

• socket_path (str) – A valid HAProxy socket path.

:raises :exc:ocspd.core.exceptions.SocketError: when the socket can not be opened.

__del__()
Close the sockets on exit.

run()
The main loop: send any commands that enter the command queue

Raises ValueError – if the command queue is empty.

add_staple(model)
Create and send the command that adds a base64 encoded OCSP staple to the HAProxy

Parameters model – An object that has a binary string ocsp_staple in it and a filename file-
name.

send(socket_key, command)
Send the command through self.socks[socket_key] (using self.socket_paths)

Parameters

• socket_key (str) – Identifying dictionary key of the socket. This is typically the
directory HAProxy serves certificates from.

• command (str) – String with the HAProxy command. For a list of possible commands,
see the haproxy documentation

:raises IOError if an error occurs and it’s not errno.EAGAIN or errno.EINTR

ocspd.core.certmodel

This module defines the ocspd.core.certmodel.CertModel class which is used to keep track of certificates
that are found by the ocspd.core.certfinder.CertFinderThread, then parsed by the ocspd.core.
certparser.CertParserThread, an OCSP request is generated by the ocspd.core.ocsprenewer.
OCSPRenewer, a response from an OCSP server is returned. All data generated and returned like the request and the
response are stored in the context.

The following logic is contained within the context class:

• Parsing the certificate.

14 Chapter 1. Introduction

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://haproxy.tech-notes.net/9-2-unix-socket-commands/

ocspd Documentation, Release 0.9

• Validating parsed certificates and their chains.

• Generating OCSP requests.

• Sending OCSP requests.

• Processing OCSP responses.

• Validating OCSP responses with the respective certificate and its chain.

class ocspd.core.certmodel.CertModel(filename)
Model for certificate files.

__init__(filename)
Initialise the CertModel model object, and read the certificate data from the passed filename.

Raises ocspd.core.exceptions.CertFileAccessError – When the certificate file
can’t be accessed.

parse_crt_file()
Parse certificate, wraps the _read_full_chain() and the _validate_cert() methods. Wicth
extract the certificate (end_entity) and the chain intermediates*), and validates the certificate chain.

recycle_staple(minimum_validity)
Try to find an existing staple that is still valid for more than the minimum_validity period. If it is not
valid for longer than the minimum_validity period, but still valid, add it to the context but still ask
for a new one by returning False.

If anything goes wrong during this process, False is returned without any error handling, we can always
try to get a new staple.

Return bool False if a new staple should be requested, True if the current one is still valid for
more than minimum_validity

renew_ocsp_staple()
Renew the OCSP staple, validate it and save it to the file path of the certificate file (certificate.
pem.ocsp).

Note: This method handles a lot of exceptions, some of then are non-fatal and might lead to retries.
When they are fatal, one of the exceptions documented below is raised. Exceptions are handled by the
ocspd.core.excepthandler.ocsp_except_handle() context.

Note: There can be several OCSP URLs. When the first URL fails, the error handler will increase the
url_index and schedule a new renewal until all URLS have been tried, then continues with retries from
the first again.

Raises

• RenewalRequirementMissing – A requirment for the renewal is missing.

• OCSPBadResponse – Response is empty, invalid or the status is not “good”.

• urllib.error.URLError – An OCSP url can’t be opened (Python3).

• urllib2.URLError – An OCSP url can’t be opened (Python2).

Raises urllib.error.URLError/urllib2.URLError - when a URL/HTTP error occurs

Raises socket.error - when a socket error occurs

1.1. Why do I need ocspd? 15

https://docs.python.org/3/library/urllib.error.html#urllib.error.URLError

ocspd Documentation, Release 0.9

Todo: Send merge request to ocspbuider, for setting the hostname in the headers while fetching OCSP
records. If accepted the request library won’t be needed anymore.

_check_ocsp_response(ocsp_staple, url)
Check that the OCSP response says that the status is good. Also sets ocspd.core.certmodel.
CertModel.ocsp_staple.valid_until.

Raises OCSPBadResponse – If an empty response is received.

_read_full_chain()
Parses binary data in self.crt_data and parses the content. The server certificate a.k.a. end_entity is
put in self.end_entity, anything else that has a CA extension is added to self.intermediates.

Note: At this point it is not clear yet which of the intermediates is the root and which are actual interme-
diates.

Raises CertParsingError – If the certificate file can’t be read, it contains errors or parts of
the chain are missing.

_validate_cert(ocsp_staple=None)
Validates the certificate and its chain, including the OCSP staple if there is one in self.ocsp_staple.

Parameters ocsp_staple (asn1crypto.core.Sequence) – Binary ocsp staple data.

Return array Validated certificate chain.

Raises CertValidationError – If there is any problem with the certificate chain and/or
the staple, e.g. certificate is revoked, chain is incomplete or invalid (i.e. wrong intermediate
with server certificate), certificate is simply invalid, etc.

Note: At this point it becomes known what the role of the certiticates in the chain is. With the exception
of the root, which is usually not kept with the intermediates and the certificate because ever client has its
own copy of it.

__repr__()
We return the file name here because this way we can use it as a short-cut when we assign this object to
something.

__str__()
Return a formatted string representation of the object containing: "<CertModel {}>".format("".
join(self.filename)) so it’s clear it’s an object and which file it concerns.

__weakref__
list of weak references to the object (if defined)

1.1.5 Scheduler documentation

Table of Contents

• Scheduler source code

16 Chapter 1. Introduction

ocspd Documentation, Release 0.9

– scheduling

Scheduler source code

scheduling

This is a general purpose scheduler. It does best effort scheduling and execution of expired items in the order they
are added. This also means that there is no guarantee the tasks will be executed on time every time, in fact they will
always be late, even if just by milliseconds. If you need it to be done on time, you schedule it early, but remember that
it will still be best effort.

The way this scheduler is supposed to be used is to add a scheduling queue, then you can add tasks to the queue to
either be put in a task queue ASAP, or at or an absolute time in the future. The queue should be consumed by a worker
thread.

This module defines the following objects:

• ocspd.scheduling.ScheduledTaskContext A context that wraps around any data you want to pass
to the scheduler and which will be added to the task queue when the schedule time expires.

• ocspd.scheduling.SchedulerThread An object that is capable of scheduling and unscheduling tasks
that you can define with ocspd.scheduling.ScheduledTaskContext.

class ocspd.scheduling.ScheduledTaskContext(task_name, subject, sched_time=None, **at-
tributes)

A context for scheduled tasks, this context can be updated with an exception count for the last exception, so it
can be re-scheduled if it is the appropriate action.

__init__(task_name, subject, sched_time=None, **attributes)
Initialise a ScheduledTaskContext with a task name, subject and optional scheduled time. Any
remaining keyword arguments are set as attributes of the task context.

Parameters

• task (str) – A task corresponding to an existing queue in the target scheduler.

• sched_time (datetime.datetime|int) – Absolute time (datetime.datetime ob-
ject) or relative time in seconds (int) to schedule the task.

• subject (obj) – A subject for the context instance this can be whatever object you want
to pass along to the worker.

• attributes (kwargs) – Any additional data you want to assign to the context,
avoid using names already defined in the context: scheduler, task, subject,
sched_time, reschedule.

scheduler = None
This attribute will be set automatically when the context is passed to a scheduler.

reschedule(sched_time=None)
Reschedule this context itself.

Parameters sched_time (datetime.datetime) – When should this context be added
back to the task queue

__weakref__
list of weak references to the object (if defined)

class ocspd.scheduling.SchedulerThread(*args, **kwargs)
This object can be used to schedule tasks for contexts.

1.1. Why do I need ocspd? 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

ocspd Documentation, Release 0.9

The context should be a ScheduledTaskContext or an extension of it.. When the scheduled time has
passed, the context will be added back to the internal task queue(s), where it can be consumed by a worker
thread. When a task is scheduled you can choose to have it added to the task queue ASAP or at a specified
absolute or relative point in time. If you add it with an absolute time in the past, or a negative relative number,
it will be added to the task queue the first time the scheduler checks expired tasks schedule times. If you want
to run a task ASAP, you probably don’t that, you should pass sched_time=None instead, it will bypass the
scheduling mechanism and place your task directly into the worker queue.

__init__(*args, **kwargs)
Initialise the thread’s arguments and its parent threading.Thread.

Parameters

• queues (iterable) – A list, tuple or any iterable that returns strings that should be the
names of queues.

• sleep (int|float) – The sleep time in seconds between checking the expired items
in the queue (default=1)

Raises KeyError – If the queue name is already taken (only when queues kwarg is used).

schedule = None
The schedule contains items indexed by time.

scheduled_by_context = None
Keeping the tasks in reverse order helps for faster unscheduling.

scheduled_by_queue = None
Keeping the tasks per queue name helps faster queue deletion.

scheduled_by_subject = None
To allow removing by subject we keep the scheduled tasks by subject.

add_queue(name, max_size=0)
Add a scheduled queue to the scheduler.

Parameters

• name (str) – A unique name for the queue.

• max_size (int) – Maximum queue depth, [default=0 (unlimited)].

Raises KeyError – If the queue name is already taken.

remove_queue(name)
Remove a scheduled queue from the scheduler.

Parameters name (str) – The name of the existing queue.

Raises KeyError – If the queue doesn’t exist.

add_task(ctx)
Add a ScheduledTaskContext to be added to the task queue either ASAP, or at a specific time.

If the context is not unique, the scheduled task will be cancelled before scheduling the new task.

Parameters ctx (ScheduledTaskContext) – A context containing data for a worker
thread.

Raises

• queue.Queue.Full – If the underlying task queue is full.

• TypeError – If the passed context is not a ScheduledTaskContext

• KeyError – If the task queue doesn’t exist.

18 Chapter 1. Introduction

https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#KeyError

ocspd Documentation, Release 0.9

cancel_task(ctx)
Remove a task from the scheduler.

Note: Tasks that were already queued for a worker to process can’t be canceled anymore.

Parameters ctx (ScheduledTaskContext) – A context containing data for a worker
thread.

Return bool True for successfully cancelled task or False.

get_task(task_name, blocking=True, timeout=None)
Get a task context from the task queue task.

Parameters

• task_name (str) – Task name that refers to an existsing scheduler queue.

• blocking (bool) – Wait until there is something to return from the queue.

Raises

• Queue.Empty – If the underlying task queue is empty and blocking is False or the timout
expires.

• KeyError – If the task queue does not exist.

task_done(task_name)
Mark a task done on a queue, this up the queue’s counter of completed tasks.

Parameters task_name (str) – The task queue name.

Raises KeyError – If the task queue does not exist.

run()
Start the scheduler thread.

run_all()
Run all tasks currently queued regardless schedule time.

_run(all_tasks=False)
Runs all scheduled tasks that have a scheduled time < now.

cancel_by_subject(subject)
Cancel scheduled tasks by the task’s context’s subject.

This comes down to: delete anything from the scheduler that relates to my object X.

Parameters subject (obj) – The object you want all scheduled tasks cancelled for.

1.1.6 Exception handling

During the OCSP renewal proces lots of things could go wrong, some errors are recoverable, others can be ignored,
still others could be cause by temporary issues e.g.: a service interruption of the OCSP server in question. So extensive
error handling is done to keep the daemons threads running.

The following is an overview of what can be expected when exceptions occur.

1.1. Why do I need ocspd? 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

ocspd Documentation, Release 0.9

Excep-
tion

SourceRaised when? Action

IOEr-
ror/OSError

certfinderDirectory can’t be read. Ignore, certfinder will try at every refresh.

Cert-
FileAc-
cessError

certfinderCertificate file can’t be read. Schedule retry 3x n*60s, then 3x, every hour, then ignore.1

Cert-
ParsingEr-
ror

cert-
parser

Can’t access the certificate file,
doesn’t parse or part of the
chain is missing.

Ignore, certfinder will try at every refresh.

OCSP-
BadResponse

oc-
spre-
newer

The response is empty, invalid
or the status is not “good”.

Schedule retry 3x n*60s, then 3x, every hour, then twice a
day. indefinately. If it’s not a server issue, wait for the file to
change1

url-
lib.error.URLError

ocsprenewerAn OCSP url can’t be opened. We can try again later, maybe there is a server side issue.
Some certificates contain multiple URL’s so we will try each
one with 10 seconds intervals and then start from the first
again. Schedule retry 3x n*60s, then 3x, every hour, then
then twice a day.

re-
quests.exceptions.Timeout

Data didn’t reach us within the
expected time frame.

re-
quests.exceptions.ReadTimeout
re-
quests.exceptions.ConnectTimeout

A connection can’t be es-
tablished because the server
doesn’t reply within the ex-
pected time frame.

re-
quests.exceptions.TooManyRedirects

When the OCSP server redi-
rects us too many times. Limit
is quite high so probably some-
thing is wrong with the OCSP
server.

re-
quests.exceptions.HTTPError

A HTTP error code was re-
turned, this can be a 4xx or 5xx
status code.

re-
quests.exceptions.ConnectionError

A connection to the OCSP
server can’t be established.

Sock-
etError

ocspadderA HAProxy socket can not be
opened

Log a critical error. Every “send” action will try to re-open
the socket.

Broken-
PipeEr-
ror

A HAProxy socket consis-
tently has a broken pipe

OC-
SPAd-
der-
BadResponse

HAProxy does not respond
with ‘OCSP Response up-
dated!’

Schedule a retry 3x n*60s, then 3x, every hour, then ignore.

ocspd.core.exceptions

This module holds the application specific exceptions.

exception ocspd.core.exceptions.OCSPBadResponse
Gets raised when a OCSP staple is not valid.

1 When the certificate file is changed, certfinder will add the file back to the parsing queue.

20 Chapter 1. Introduction

ocspd Documentation, Release 0.9

exception ocspd.core.exceptions.RenewalRequirementMissing
Gets raised when a OCSP renewal is run while not all requirements are met.

exception ocspd.core.exceptions.SocketError
Gets raised by the OCSPAdder when it is impossible to connect to or use its socket.

exception ocspd.core.exceptions.OCSPAdderBadResponse
Gets raised when the HAProxy does not respond with “OCSP Response updated”

exception ocspd.core.exceptions.CertFileAccessError
Gets raised when a file can’t be accessed at all.

exception ocspd.core.exceptions.CertParsingError
Gets raised when something went wrong while parsing the certificate file.

exception ocspd.core.exceptions.CertValidationError
Gets raised when something went wrong while validating the certificate chain.

ocspd.core.excepthandler

This module defines a context in which we can run actions that are likely to fail because they have intricate depen-
dencies e.g. network connections, file access, parsing certificates and validating their chains, etc., without stopping
execution of the application. Additionally it will log these errors and depending on the nature of the error reschedule
the task at a time that seems reasonable, i.e.: we can reasonably expect the issue to be resolved by that time.

It is generally considered bad practice to catch all remaining exceptions, however this is a daemon. We can’t afford
it to get stuck or crashed. So in the interest of staying alive, if an exception is not caught specifically, the handler
will catch it, generate a stack trace and save if in a file in the current working directory. A log entry will be created
explaining that there was an exception, inform about the location of the stack trace dump and that the context will be
dropped. It will also kindly request the administrator to contact the developers so the exception can be caught in a
future release which will probably increase stability and might result in a retry rather than just dropping the context.

Dropping the context effectively means that a retry won’t occur and since the context will have no more references,
it will be garbage collected. There is however still a reference to the certificate model in core.daemon.run.
models. With no scheduled actions it will just sit idle, until the finder detects that it is either removed – which will
cause the entry in core.daemon.run.models to be deleted, or it is changed. If the certificate file is changed the
finder will schedule schedule a parsing action for it and it will be picked up again. Hopefully the issue that caused the
uncaught exception will be resolved, if not, if will be caught again and the cycle continues.

ocspd.core.excepthandler.LOG_DIR = '/var/log/ocspd/'
This is a global variable that is overridden by ocspd.__main__ with the command line argument: --logdir

ocspd.core.excepthandler.ocsp_except_handle(ctx=None)
Handle lots of potential errors and reschedule failed action contexts.

ocspd.core.excepthandler.delete_ocsp_for_context(ctx)
When something bad happens, sometimes it is good to delete a related bad OCSP file so it can’t be served any
more.

Todo: Check that HAProxy doesn’t cache this, it probably does, we need to be able to tell it not to remember
it.

ocspd.core.excepthandler.dump_stack_trace(ctx, exc)
Examine the last exception and dump a stack trace to a file, if it fails due to an IOError or OSError, log that it
failed so the a sysadmin may make the directory writeable.

1.1. Why do I need ocspd? 21

ocspd Documentation, Release 0.9

1.2 Indices and tables

• genindex

• modindex

• search

22 Chapter 1. Introduction

Python Module Index

o
ocspd, 9
ocspd.core.certfinder, 11
ocspd.core.certmodel, 14
ocspd.core.certparser, 12
ocspd.core.daemon, 9
ocspd.core.excepthandler, 21
ocspd.core.exceptions, 20
ocspd.core.ocspadder, 13
ocspd.core.ocsprenewer, 12
ocspd.core.taskcontext, 10
ocspd.scheduling, 17

23

ocspd Documentation, Release 0.9

24 Python Module Index

Index

Symbols
__del__() (ocspd.core.ocspadder.OCSPAdder method),

14
__init__() (ocspd.core.certfinder.CertFinderThread

method), 11
__init__() (ocspd.core.certmodel.CertModel method), 15
__init__() (ocspd.core.certparser.CertParserThread

method), 12
__init__() (ocspd.core.ocspadder.OCSPAdder method),

13
__init__() (ocspd.core.ocsprenewer.OCSPRenewerThread

method), 13
__init__() (ocspd.core.taskcontext.OCSPTaskContext

method), 10
__init__() (ocspd.scheduling.ScheduledTaskContext

method), 17
__init__() (ocspd.scheduling.SchedulerThread method),

18
__repr__() (ocspd.core.certmodel.CertModel method), 16
__str__() (ocspd.core.certmodel.CertModel method), 16
__weakref__ (ocspd.core.certmodel.CertModel attribute),

16
__weakref__ (ocspd.scheduling.ScheduledTaskContext

attribute), 17
_check_ocsp_response() (oc-

spd.core.certmodel.CertModel method),
16

_del_model() (ocspd.core.certfinder.CertFinderThread
method), 11

_find_new_certs() (ocspd.core.certfinder.CertFinderThread
method), 11

_open_socket() (ocspd.core.ocspadder.OCSPAdder
method), 14

_read_full_chain() (ocspd.core.certmodel.CertModel
method), 16

_run() (ocspd.scheduling.SchedulerThread method), 19
_update_cached_certs() (oc-

spd.core.certfinder.CertFinderThread method),
12

_validate_cert() (ocspd.core.certmodel.CertModel
method), 16

A
add_queue() (ocspd.scheduling.SchedulerThread

method), 18
add_staple() (ocspd.core.ocspadder.OCSPAdder method),

14
add_task() (ocspd.scheduling.SchedulerThread method),

18

C
cancel_by_subject() (ocspd.scheduling.SchedulerThread

method), 19
cancel_task() (ocspd.scheduling.SchedulerThread

method), 18
CertFileAccessError, 21
CertFinderThread (class in ocspd.core.certfinder), 11
CertModel (class in ocspd.core.certmodel), 15
CertParserThread (class in ocspd.core.certparser), 12
CertParsingError, 21
CertValidationError, 21
check_ignore() (ocspd.core.certfinder.CertFinderThread

method), 12
compile_pattern() (ocspd.core.certfinder.CertFinderThread

static method), 12

D
DEFAULT_CONFIG_FILE_LOCATIONS (in module

ocspd), 9
DEFAULT_REFRESH_INTERVAL (in module ocspd), 9
delete_ocsp_for_context() (in module oc-

spd.core.excepthandler), 21
dump_stack_trace() (in module oc-

spd.core.excepthandler), 21

F
FILE_EXTENSIONS_DEFAULT (in module ocspd), 9

25

ocspd Documentation, Release 0.9

G
get_task() (ocspd.scheduling.SchedulerThread method),

19

L
LOG_DIR (in module ocspd), 9
LOG_DIR (in module ocspd.core.excepthandler), 21

M
MAX_RESTART_THREADS (in module ocspd), 9

O
OCSP_ADD (ocspd.core.ocspadder.OCSPAdder at-

tribute), 13
ocsp_except_handle() (in module oc-

spd.core.excepthandler), 21
OCSPAdder (class in ocspd.core.ocspadder), 13
OCSPAdderBadResponse, 21
OCSPBadResponse, 20
ocspd (module), 9
ocspd.core.certfinder (module), 11
ocspd.core.certmodel (module), 14
ocspd.core.certparser (module), 12
ocspd.core.daemon (module), 9
ocspd.core.excepthandler (module), 21
ocspd.core.exceptions (module), 20
ocspd.core.ocspadder (module), 13
ocspd.core.ocsprenewer (module), 12
ocspd.core.taskcontext (module), 10
ocspd.scheduling (module), 17
OCSPRenewerThread (class in ocspd.core.ocsprenewer),

13
OCSPTaskContext (class in ocspd.core.taskcontext), 10

P
parse_certificate() (ocspd.core.certparser.CertParserThread

method), 12
parse_crt_file() (ocspd.core.certmodel.CertModel

method), 15

R
recycle_staple() (ocspd.core.certmodel.CertModel

method), 15
refresh() (ocspd.core.certfinder.CertFinderThread

method), 11
remove_queue() (ocspd.scheduling.SchedulerThread

method), 18
renew_ocsp_staple() (ocspd.core.certmodel.CertModel

method), 15
RenewalRequirementMissing, 20
reschedule() (ocspd.scheduling.ScheduledTaskContext

method), 17

run() (ocspd.core.certfinder.CertFinderThread method),
11

run() (ocspd.core.certparser.CertParserThread method),
12

run() (ocspd.core.ocspadder.OCSPAdder method), 14
run() (ocspd.core.ocsprenewer.OCSPRenewerThread

method), 13
run() (ocspd.scheduling.SchedulerThread method), 19
run_all() (ocspd.scheduling.SchedulerThread method),

19

S
schedule (ocspd.scheduling.SchedulerThread attribute),

18
schedule_renew() (ocspd.core.ocsprenewer.OCSPRenewerThread

method), 13
scheduled_by_context (oc-

spd.scheduling.SchedulerThread attribute),
18

scheduled_by_queue (ocspd.scheduling.SchedulerThread
attribute), 18

scheduled_by_subject (oc-
spd.scheduling.SchedulerThread attribute),
18

ScheduledTaskContext (class in ocspd.scheduling), 17
scheduler (ocspd.scheduling.ScheduledTaskContext at-

tribute), 17
SchedulerThread (class in ocspd.scheduling), 17
send() (ocspd.core.ocspadder.OCSPAdder method), 14
set_last_exception() (oc-

spd.core.taskcontext.OCSPTaskContext
method), 10

SocketError, 21

T
task_done() (ocspd.scheduling.SchedulerThread

method), 19
TASK_NAME (ocspd.core.ocspadder.OCSPAdder

attribute), 13

26 Index

	Introduction
	Why do I need ocspd?
	NOTICE!!
	Quick start
	Module description
	Daemon documentation
	Scheduler documentation
	Exception handling

	Indices and tables

	Python Module Index

